ABSTRACT ALGEBRA-II

SMMA51

Vector Space

Definition:

A non empty set V is said to be a vector space over a field F if

- V is an abelian group under an operation called addition which we defined by +.
- For every α ε F and v ε V, there is defined an element α v in V subject to the following conditions.
 - a) α (u+v)= α u+ α v for all u,v ϵ V and α ϵ F.
 - b) $(\alpha+\beta)u=\alpha u+\beta u$ for all uev and α,β eF.
 - c) $\alpha(\beta u) = (\alpha \beta)u$ for all $u \in V$ and $\alpha, \beta \in F$.
 - d)1u=u for all uεV.

Remarks:

- The elements of F are called scalars and the elements of V are called vectors.
- The rule which associates with each scalar αεF and a vector vεV, a
 vector αv is called the scalar multiplication. Thus a scalar
 multiplication gives rise to a function from F×v→V defined by
 (α,v)→αv.

Examples:

1) Let F be any field

Let
$$F^n = \{(x_1, x_2, \dots, x_n)/x_i \in F\}$$

In fⁿ we define addition and scalar multiplication as in example.

Then F^n is a vector space over F and denote this vector space by $V_n(F)$.

 Let F be a field. Then F[x] the set of all polynomials over F is a vector space over F under the addition of polynomials and scalar multiplication defined by

$$\alpha(a_0+a_1x+....+a_nx^n)=\alpha a_0+\alpha a_1x+....+\alpha a_nx^n$$

3) Let V be the set of all funtions from R to R

Let f,g
$$\epsilon$$
V we define(f+g)(x)=f(x)+g(x) and

$$(\alpha f)(x)=\alpha[f(x)]$$

V is a vector space over R.

Theorem:5.1

Let V be a vector space over a field F.Then

 $1.\alpha0=0$ for all $\alpha \epsilon F$.

2.0v=0 for all vεV

3.(-
$$\alpha$$
)V= α (-V)=-(α V) for all $\alpha \epsilon F$ and $\nu \epsilon V$.

4.
$$\alpha v = 0 = > \alpha = 0$$
 or $v = 0$

Proof:

1)
$$\alpha 0 = \alpha(0+0) = \alpha 0 + \alpha 0$$

Hence α0=0

2)
$$0v=(0+0)v=0v+0v$$

Hence 0v=0

$$3)0=[\alpha+(-\alpha)]v$$

 $=\alpha v+(-\alpha)v$ Hence $(-\alpha)v = -(\alpha v)$ Similarly $\alpha(-v)=-(\alpha v)$ Hence $(-\alpha)v = \alpha(-v) = -(\alpha v)$ 4) Let uv=0 if $\alpha=0$ there is nothing to prove. Let $\alpha \neq 0$ Then $\alpha^{-1} \in F$. Now $v=1v=(\alpha^{-1}\alpha)v=\alpha^{-1}(\alpha v)$ $= \alpha^{-1} 0 = 0.$

Subspaces

Definition:

Let V be a vector space over a field F. A nonempty subset W of V is called a subspace of V if W itself is a vector space over F under the operation of V

Theorem:5.2

Let V be a vector space over F.A nonempty subset W of V is a subspaces of V iff W is closed with respect to vector addition and scalar multiplication in V.

Soln:

Let W be a subspace of V.

W itself is a vector space and W is closed with respect to vector addition and scalar multiplication.

Conversely, let W be a non-empty subset of V such that u,v ∈W

 $\Rightarrow u + v \in W$

Scalar multiplication

 $u \in W$ and $\alpha \in F \Rightarrow \alpha u \in W$.

We prove that W is a subspace of V.

W is nonempty there exists an element u ∈ W

Identy:

 $0u = 0 \in W$

Inverse:

 $V \in W \Rightarrow (-1) V$

⇒-v ∈ W

Thus W contains 0 and the additive inverse of each of its elements

∴(W,+) is an abelian group.

Hence w is an additive subgroup of V.

Also $u \in W$ and $\alpha \in F$

⇒αu ∈W.

Since the elements of W are the elements of V the other axioms of a vector space are true Nw.

Hence W is a subspace of V

Theorem:5.3

Let V be a vector space over a field F. Non empty subset W of V is a subspace of V iff $u,v \in F$.

And $\alpha\beta \in F \rightarrow \alpha u + \beta v \in W$.

Proof:

Let W be a subspace of V. Let u, v \in W. and α , $\beta \in$ F

Then by theorem $5.2 \, \beta v \in W$ and hence $\alpha u + \beta v \in W$

Conversely let $u, v \in W$ and $\alpha, \beta \in F$

 $\Rightarrow \alpha u + \beta v \in W$.

Taking $\alpha = \beta = 1$ we get $u, v \in W$.

 $\Rightarrow u + v \in W$

Taking $\beta = 0$ we get $\alpha \in F$ and $u \in W \Rightarrow \alpha u \in W$.

.. W is a subspace of r

Example 1:

{0} and V are subspaces of any vector space V. They are called the trivial subspaces of V.

Example2:

$$W=\{(a,0,0) \mid a \in R\} \text{ is a subspace of } R^3, \text{ for let } u=(a,0,0),$$

$$v=(b,0,0) \in W \text{ and } \alpha,\beta \in R$$

Soln:

Then
$$\alpha u + \beta v = \alpha (a, 0, 0) + \beta (b, 0, 0)$$

= $(\alpha a, 0, 0) + (\beta b, 0, 0)$
= $(\alpha a, \beta b, 0, 0) \in W$

Hence W is a subspace of R3

Note:

Geometrically W Consists of all points on the x-axis in the Euclidean 3 space

Example: 3

In
$$R^3W=\{(k_a,k_b,k_c)/k \in R\}$$
 is a subspace of R^3

Soln:

For if
$$u = (k_{1a}, k_{1b}, k_{1c})$$
 $v = (k_{2a}, k_{2b}, k_{2c}) \in W$
 $u,v \in W$ and $\alpha, \beta \in R$
then, $\alpha u + \beta v = \alpha (k_{1a}, k_{1b}, k_{1c}) + \beta (k_{2a}, k_{2b}, k_{2c})$
 $= (\alpha k_{1a}, \alpha k_{1b}, \alpha k_{1c}) + (\beta k_{2a}, \beta k_{2b}, \beta k_{2c})$
 $= (\alpha k_{1} + \beta k_{2}) a, (\alpha k_{1} + \beta k_{2}) b + (\alpha k_{1} + \beta k_{2}) c$

Hence W is a subspace of R3

Subspaces

Problem - 1

Prove that the intersection of two subspaces of a vector space is a subspace.

Solution.

Let A and B be two subspace of a vector space V over a field F.

We claim that A∩B is a subspace of V.

Clearly o∈ A∩B and hence A∩B is non - empty.

Now ,let u, $v \in A \cap B$ and $\alpha, \beta \in F$.

Then $u, v \in A$ and $u, v \in B$.

 $\alpha u + \beta v \in A$ and $\alpha u + \beta v \in B$.

(Since A and B are subspaces)

 $\alpha u + \beta v \in A \cap B$.

Hence A∩ B is a subspace of V.

Problem. 2

Prove that the union of two subspaces of a vector space need not be a subspace.

Solution.

Let
$$A = \{ (a, 0, 0) / a \in R \}$$

$$B = \{(0,b,0)/b \in R\}$$

Clearly A and B are subspace of R3 (example 2 of 5.2)

However A U B is a not a subspace of R3.

For (1,0,0) and $(0,1,0) \in A \cup B$.

But
$$(1,0,0) + (0,1,0) = (1,1,1) \notin A \cup B$$
.

Problem - 3.

Prove that the union of two subspaces of a vector space is a subspace iff one is contanied in the other.

Solution.

Refer theorem

Let H and K be two subgroups of G such that one is contained in the other. Hence either $H \subseteq K$ or $K \subseteq H$.

 \therefore H UK =K or HU K= H. Hence HU K is a subgroup of G.

Conversely, Suppose $H \cup K$ is a subgroup of G. We claim that $H \subseteq K$ or $K \subseteq H$.

Suppose that H is not contained in K and K is not contained in H. Then there exist elements a, b such that

a∈H and a∉ K ... (1)

b∈ K and b ∉ H ... (2)

clearly $a,b \in H \cup k$. Since $H \cup K$ is a subgroup of G, $ab \in H \cup K$. Hence $ab \in H$ or $ab \in K$.

case (1) Let $ab \in H$. Since $a \in K$, $a^{-1} \in H$.

Hence a^{-1} (ab) = b∈ H which is a contradiction to (2).

Case(2)

Let $ab \in K$. Since $b \in k$, $b^{-1} \in K$.

Hence (ab)b-1 = $a \in K$ Which is a contradiction to (1).

Hence Our assumption that H is not contained in K and K is not contained in H is false.

 $H \subseteq K$ or $K \subseteq H$.

Problem:

If A and B are subspaces of V prove that $A+B=\{v\in V \mid v=a+b, b\in B\}$ is a subspace of V. Furthere show that A+B is the smellest subspace containing A and B. (i.e) If W is any any subspace of V containing A and B then W contains A+B.

Soln:

Let $v_1, v_2 \in A + B$ and $\alpha \in F$.

Then $v_1=a_1+b_1$, $v_2=a_2+b_2$ where $a_1,a_2\in A$ and $b_1,b\in B$.

Now, $v_1+v_2=(a_1+b_1)+(a_2+b_2)$

$$= (a_1+a_2)+(b_1+b_2) \in A+B.$$

Also, $\alpha(a_1+b_1)=\alpha a_1+\alpha b_1 \in A+B$

Hence A+B is a subspace of V. Clearly ACA+B and BCA+B.\$

Now, let we be any subspace of V containing A and B.

To Prove: A+BCW.

Let $v \in A + B$. Then v = a + b where $a \in A$ and $b \in B$.

 $a+b=v \in W$.

A+BCW so that A+B is the smallest subspace of V containing A and B.

Problem: 5

Let A and B be subspace of a vecor space V. Then $A\Pi B = \{0\}$ iff every vector $v \in A + B$ can be uniquely expressed in the form v = a + b where $a \in A$ and $b \in B$.

Soln:

Let $A \cap B = \{0\}$. Let $v \in A + B$.

Let $v=a_1+b_1=a_2+b_2$ where $a_1,a_2\in A$ and $b_1,b_2\in B$.

Then $a_1-a_2=b_1-b_2$.

But a_1 - $a_2 \in A$ and b_2 - $b_1 \in B$.

Hence a_1 - a_2 , b_2 - $b_1 \in A \cap B$.

Since $A\Omega B=\{0\}$, $a_1-a_2=0$ and $b_2-b_1=0$ so that $a_1=a_2$ and $b_1=b_2$. Hence the expression of v in the form a+b where $a\in A$ and $b\in B$ is unique.

form a+b where $a \in A$ and $b \in B$.

We claim that $A \cap B = \{0\}$.

If $A \cap B \neq \{0\}$, let $v \in A \cap B$ and $v \neq 0$.

Then 0=v-v=0+0. Thus 0 has expressed in the form a+b in two different ways which is a contradiction. Hence $A\Omega B=\{0\}$.

DEFINITION:

Let A and B be subspaces of a vector space V. Then V is called the **direct** sum of A and B if (i) A+B=V (ii) $A\cap B=\{0\}$.

If Vis the direct sum of A and B we write V=A direct sum of B.

Note:

V=A direct sum of B iff every element of V can be uniquely expressed in the form a+b where $a\in A$ and $b\in B$.

EXAMPLE: 1

In $v_3(R)$ Let $A=\{(a,b,0)\backslash a,b\in R\}$ $B=\{(0,0,c)\backslash c\in R\}$

Clearly A and B are subspace of V and $A \cap B = \{0\}$.

$$V=(a,b,c)\in V_3(R)$$

Then V=(a,b,0)+(0,0,c)

So that $A+B=V_3(R)$

Hence $V_3(R) = A$ direct sum of B.

EXAMPLE: 2

In M₃(R), let A be the set of all matrices of the form $A = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ $B = \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$

Let
$$u = \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$$
 $V = \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$

$$\alpha \mathbf{u} + \beta \mathbf{v} = \alpha \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} + \beta \begin{pmatrix} 0 & 0 \\ c & d \end{pmatrix}$$

$$= \begin{pmatrix} \alpha a & \alpha b \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ \beta c & \beta d \end{pmatrix} \qquad \alpha, \beta \in M_2(R)$$

$$=\begin{pmatrix} \alpha a & \alpha b \\ \beta c & \beta d \end{pmatrix}$$

Clearly A and B are subspace of M2(R).

$$A+B=\begin{pmatrix} a & b \\ c & d \end{pmatrix}=M_2(R)$$

$$A \cap B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
. Hence $M_2(R) = A$ direct sum of B.

Theorm 5.4. Let V b a vector space overF and W Subspace of v.Let V/W= {W+v/v ∈ V}. Then V/W is a vector space over F under the following operations.

1)
$$(W+v1) + (W+v2) = W+v1+v2$$
.

2)
$$a(W + v1) = W + av1$$

Proof.

Since W is a subspace of V it is a subgroup of (V, +).

Since (V, +) is abelian, W is a normal subgroup of V, +) so that (i) is a well defind operation.

Now we shall prove that (ii) is a well defind operation.

W +v1= W+v2 V1 -v2 €W (since W is a supspace) α(v1-v2) €W αv1€W+αv2 W+αv1=W+αv2 Hence (2) is well defined operation Now, let W is a group under +.

Further
$$(W + v1) + (W+$$

$$v2) = W+v1+v2=W+$$

$$(W+v2)+(W+v2)$$

Hence V/W is an abelian group.

Now, let
$$\alpha$$
, $\beta \in F$
 $\alpha(W+v1)+(W+v2))=\alpha(W+v1+v2)$

$$'=W+\alpha(v1+v2)$$

$$=W+\alpha v1+\alpha v2$$

$$= (W+\alpha v1) + (W+\alpha v2)$$

$$=\alpha (W + v1) + \alpha (W + v2)$$

$$(\alpha + \beta)(W + v1) = W + (\alpha + \beta)v1$$

$$= W + \alpha v 1 + \beta v 1$$

$$= (W + \alpha v1) + (W + \beta v1)$$

$$=\alpha(W+v1)+\beta(W+v1)$$

$$\alpha[\beta(W+v1)]=\alpha(W+\beta v1)$$

$$=(\alpha\beta)(W+v1)$$

$$1[W+v1]=W+1v1$$

$$=W+v1$$

Hence V/W is a vector space.

The vector space V/W is called the quotient space of V andW

LINEAR TRANSFORMATION

Definition:

Let V and W be vector spaces over a field F. A mapping T: V → W is called a homomorphism if

- (a) T(u+v) = T(u)+T(v) and
- (b) $T(\alpha u) = \alpha T(u)$ where $\alpha \in F$ and $u, v \in V$.

A homomorphism T of vector spaces is also called a linear transformation.

- If T is 1-1 then T is called monomorphism.
- (II) If T is onto then T is called an epimorphism.
- (III) If T is 1-1 and onto T is called isomorphism.
- (IV) Two vector spaces V and W are said to be isomorphic if there exists an isomorphism T: V →W and we write V isomorphism to W.
- (V) A linear transformation T: V → F is called a linear functional.

Examples:

Let V be a vector space over a field F and W a subspace of V. Then
 T: V → V/W defined by T(v)=W + v is a linear transformation, for,
 T(v₁+v₂)=W+(v₁+v₂)

$$= (W + v_1) + (W + v_2)$$

$$= T(v_1) + T(v_2)$$
Also $T(\alpha v_1) = W + \alpha v_1$

$$= \alpha(W + v_1)$$

$$= \alpha T(v_1).$$

This is called the natural homomorphism from V to V/W. Clearly T is onto and hence T is an epimorphism.

- T: V₃(R) → V₃(R) defined by T(a, b, c)=(a,0,0) is a linear transformation.
- T: R² → R² defined by T(a, b)=(2a-3b, a+4b) is a linear transformation.

Let
$$u = (a, b)$$
 and $v = (c, d)$ and $\alpha \in R$.
Therefore, $T(u + v)=T((a, b) + (c, d))$

```
=T(a+c,b+d)
=(2(a+c)-3(b+d),(a+c)+4(b+d))
=(2a+2c-3b-3d,a+c+4b+4d)
=(2a-3b+2c-3d,a+4b+c+4d)
=(2a-3b,a+4b)+(2c-3d,c+4d)
=T(a,b)+T(c,d)
=T(u)+T(v).
Also, T(\alpha u)=T(\alpha(a,b))
=T(\alpha a,\alpha b)
=(2\alpha a-3\alpha b,\alpha a+4\alpha b)
=\alpha(2a-3b,a+4b)
=\alpha T(a,b)
=\alpha T(a,b)
```

Hence T is a linear transformation.

Theorem: 5.5

Let T: V \rightarrow W be a linear transformation .Then T(V) = $\{T(V) / v \in V\}$ is a Subspace of W.

Proof:

Let w_1 and $w_2 \in T(V)$ and $\alpha \in F$. Then there exists $v_1, v_2 \in V$ such that

$$T(v_1) = w_1$$
 and $T(v_2) = w_2$.

Hence
$$w_1 + w_2 = T(v_1) + T(v_2)$$

$$= T(v_1) + T(v_2) \in T(V)$$

Similarly
$$\alpha w_1 = \alpha T(v_1) = T(\alpha v_1) \in T(V)$$

Hence T(V) is a subspace of W.

Definition:

Let V and W be a vector spaces over a field F and T: $V \rightarrow W$ be a linear Transformation. Then the kernel of T is defined to be $\{v \mid v \in V \text{ and } T(V)=0\}$ and is denoted by ker T.

Thus ker
$$T = \{v \mid v \in V \text{ and } T(v) = 0\}$$

For example, in example 1, ker T = V.

In example 2, $\ker T = \{0\}$

In example 5, ker T is the set of all constant polynomials.

Note:

Let $T: V \rightarrow W$ be a linear transformation. Then T is a homomorphism iff $\ker T = \{0\}$

Theorem 5.6: (Fundamental theorem of homomorphism)

Let V and W be vector spaces over a field F and T : $V \rightarrow W$ be an epimorphism.

Then (i) ker $T = V_1$ is a subspaces of V and

(ii)
$$\frac{v}{v_1} \cong W$$

Proof:

(i) Given
$$V_1 = \ker T$$

= $\{v/v \in V \text{ and } T(v)=0\}$

Clearly T(0) = 0. Hence $0 \in \ker T = V_1$

:: V1 is nonempty subset of V.

Let u, $v \in \ker T$ and α , $\beta \in F$

$$T(u) = 0$$
 and $T(v) = 0$

Now
$$T(\alpha u + \beta v) = T(\alpha u) + T(\beta v)$$

$$= \alpha T(u) + \beta T(v)$$

$$= \alpha 0 + \beta 0$$

$$= 0$$

$$\therefore 0\alpha u + \beta v \in \ker T$$

ker T is a subspace of V.

(ii) We define a map
$$\varphi: \frac{v}{v_1} \to W$$
 by $\varphi(V1+v)=T(v)$ φ is well defined.

Let
$$V_1+v=V_1+w$$

$$v \in V_1+w$$

$$v = v_1 + w$$
 where $v_1 \in V_1$

$$T(v) = T(v_1+w)=T(v_1) + T(w)$$

$$0 + T(w) = T(w)$$

$$\varphi(V_1+v)=\varphi(V_1+w)$$

$$\varphi(V_1+v)=\varphi(V_1+w)$$

$$\Rightarrow T(v)=T(w)$$

$$\Rightarrow$$
T(v)-T(w)=0

$$\Rightarrow$$
T(v)+T(-w)=0

$$\Rightarrow$$
T(v-w)=0

$$\Rightarrow$$
v-w \in kerT=V₁

$$\Rightarrow v \in V_1 + w$$

$$\Rightarrow V_1+v=V_1+w$$

φ is onto

Let w∈W.

Since T is onto there exists $v \in V$ such that T(v)=w.

$$\cdot\cdot\phi(V_1+v)=w$$

φ Is a homomorphism.

$$\begin{split} \phi[(V_1+v)+(V_1+w)] &= \phi \; (V_1+(v+w)) \\ &= T(v+w) \\ &= T(v)+T(w) \\ &= \phi(V_1+v)+\; \phi(V_1+w) \end{split}$$

THEOREM 5.7

Let V be a vector space over a field F. Let A and B be subspaces of V.

Then $A+B/A \cong B/A \cap B$

Proof:

We know that A+B is a subspace of V containing A.

Hence A+B/A Is also a vector space over F.

An element of A+B/A is of the form A+ (a+b) where a ϵ A and b ϵ B.

But A+a = A.

Hence an element of A+B/B is of the form A+b.

Now, consider f: B→A+B/A defined by

F(b) = A+b.

Clearly f is onto.

Also $f(b_1+b_2) = A+(b_1+b_2)$

 $= (A+b_1) + (A+b_2)$

 $= f(b_1) + f(b_2)$

And $f(\alpha b_1) = A + \alpha b_1$

 $=\alpha(A+b_1)$

 $=\alpha f(b_1)$

Hence f is a linear transformation.

Let k be the kernel of f.

Then $K = \{b/b \in B, A+b, A+b = A\}.$

ABSTRACT ALGEBRA II ASSIGNMENT

Now,
$$A+b=A$$
 iff $b\in A$.

Hence
$$K = A \cap B$$
.

THEOREM 5.8

Let V and W be vector spaces over a field F.let L (V,W) represent the set of all linear transformation from V to W. Then L(V,W) itself is a vector space over F under addition and scalar multiplication

Defined by
$$(f+g)(v) = f(v) + g(v)$$
 and $(\alpha f)(v) = \alpha f(v)$.

Proof:

Let f, g
$$\in$$
 L(V,W) and $v_1, v_2 \in V$

Then
$$(f+g)(v_1 + v_2) = f(v_1+v_2) + g(v_1+v_2)$$

$$=f(v_1) + f(v_2) + g(v_1) + g(v_2)$$

$$= f(v_1) + g(v_1) + f(v_2) + g(v_2)$$

$$=(f+g)(v_1)+(f+g)(v_2)$$

Also
$$(f+g)(\alpha v) = f(\alpha v) + g(\alpha v)$$

$$=\alpha f(v) + \alpha g(v)$$

$$=\alpha[f(V)+g(v)]$$

$$=\alpha(f+g)(v).$$

Hence (f+g) $\in L(V,W)$

Now,
$$(\alpha f) (v_1+v_2) = (\alpha f) + (v_1) + (\alpha f)(v_2)$$

$$=\alpha[f(v_1)+f(v_2)]$$

$$=\alpha f(v_1+v_2)$$

Also (
$$\alpha f$$
) (βv) = $\alpha [f(\beta v)] = \alpha [\beta f(v)]$

Hence $\alpha f \in L(V,W)$

ABSTRACT ALGEBRA II ASSIGNMENT

Addition defined on L(V,W) is obviously commutative and associative .

The function $f: V \rightarrow W$ defined by f(v) = 0 for all $v \in V$ is clearly a linear transformation and is the additive identity of L(V,W).

Further (-f): V→W defined by

(-f)(v) = -f(v) is the additive inverse of f.

Thus L(V,W) is an abelian group under addition.

The remaining axioms for a vector space can be easily verified,

Hence L(V,W) is a vector space over F.

